• Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
Tuesday, February 10, 2026
newsaiworld
  • Home
  • Artificial Intelligence
  • ChatGPT
  • Data Science
  • Machine Learning
  • Crypto Coins
  • Contact Us
No Result
View All Result
  • Home
  • Artificial Intelligence
  • ChatGPT
  • Data Science
  • Machine Learning
  • Crypto Coins
  • Contact Us
No Result
View All Result
Morning News
No Result
View All Result
Home Artificial Intelligence

Coaching a Mannequin on A number of GPUs with Information Parallelism

Admin by Admin
December 27, 2025
in Artificial Intelligence
0
Ilse orsel hjmv0xg kpk unsplash scaled.jpg
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

READ ALSO

The Proximity of the Inception Rating as an Analysis Criterion

The Loss of life of the “All the pieces Immediate”: Google’s Transfer Towards Structured AI


import dataclasses

import os

 

import datasets

import tqdm

import tokenizers

import torch

import torch.distributed as dist

import torch.nn as nn

import torch.nn.purposeful as F

import torch.optim.lr_scheduler as lr_scheduler

from torch import Tensor

from torch.nn.parallel import DistributedDataParallel as DDP

from torch.utils.information.distributed import DistributedSampler

 

# Construct the mannequin

@dataclasses.dataclass

class LlamaConfig:

    “”“Outline Llama mannequin hyperparameters.”“”

    vocab_size: int = 50000  # Measurement of the tokenizer vocabulary

    max_position_embeddings: int = 2048  # Most sequence size

    hidden_size: int = 768  # Dimension of hidden layers

    intermediate_size: int = 4*768  # Dimension of MLP’s hidden layer

    num_hidden_layers: int = 12  # Variety of transformer layers

    num_attention_heads: int = 12  # Variety of consideration heads

    num_key_value_heads: int = 3  # Variety of key-value heads for GQA

 

 

class RotaryPositionEncoding(nn.Module):

    “”“Rotary place encoding.”“”

 

    def __init__(self, dim: int, max_position_embeddings: int) -> None:

        “”“Initialize the RotaryPositionEncoding module

 

        Args:

            dim: The hidden dimension of the enter tensor to which RoPE is utilized

            max_position_embeddings: The utmost sequence size of the enter tensor

        ““”

        tremendous().__init__()

        self.dim = dim

        self.max_position_embeddings = max_position_embeddings

        # compute a matrix of ntheta_i

        N = 10_000.0

        inv_freq = 1.0 / (N ** (torch.arange(0, dim, 2) / dim))

        inv_freq = torch.cat((inv_freq, inv_freq), dim=–1)

        place = torch.arange(max_position_embeddings)

        sinusoid_inp = torch.outer(place, inv_freq)

        # save cosine and sine matrices as buffers, not parameters

        self.register_buffer(“cos”, sinusoid_inp.cos())

        self.register_buffer(“sin”, sinusoid_inp.sin())

 

    def ahead(self, x: Tensor) -> Tensor:

        “”“Apply RoPE to tensor x

 

        Args:

            x: Enter tensor of form (batch_size, seq_length, num_heads, head_dim)

 

        Returns:

            Output tensor of form (batch_size, seq_length, num_heads, head_dim)

        ““”

        batch_size, seq_len, num_heads, head_dim = x.form

        dtype = x.dtype

        # remodel the cosine and sine matrices to 4D tensor and the identical dtype as x

        cos = self.cos.to(dtype)[:seq_len].view(1, seq_len, 1, –1)

        sin = self.sin.to(dtype)[:seq_len].view(1, seq_len, 1, –1)

        # apply RoPE to x

        x1, x2 = x.chunk(2, dim=–1)

        rotated = torch.cat((–x2, x1), dim=–1)

        output = (x * cos) + (rotated * sin)

        return output

 

 

class LlamaAttention(nn.Module):

    “”“Grouped-query consideration with rotary embeddings.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        self.hidden_size = config.hidden_size

        self.num_heads = config.num_attention_heads

        self.head_dim = self.hidden_size // self.num_heads

        self.num_kv_heads = config.num_key_value_heads  # GQA: H_kv < H_q

 

        # hidden_size have to be divisible by num_heads

        assert (self.head_dim * self.num_heads) == self.hidden_dimension

 

        # Linear layers for Q, Okay, V projections

        self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)

        self.k_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)

        self.v_proj = nn.Linear(self.hidden_size, self.num_kv_heads * self.head_dim, bias=False)

        self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=False)

 

    def ahead(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:

        bs, seq_len, dim = hidden_states.dimension()

 

        # Mission inputs to Q, Okay, V

        query_states = self.q_proj(hidden_states).view(bs, seq_len, self.num_heads, self.head_dim)

        key_states = self.k_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)

        value_states = self.v_proj(hidden_states).view(bs, seq_len, self.num_kv_heads, self.head_dim)

 

        # Apply rotary place embeddings

        query_states = rope(query_states)

        key_states = rope(key_states)

 

        # Transpose tensors from BSHD to BHSD dimension for scaled_dot_product_attention

        query_states = query_states.transpose(1, 2)

        key_states = key_states.transpose(1, 2)

        value_states = value_states.transpose(1, 2)

 

        # Use PyTorch’s optimized consideration implementation

        # setting is_causal=True is incompatible with setting express consideration masks

        attn_output = F.scaled_dot_product_attention(

            query_states,

            key_states,

            value_states,

            attn_mask=attn_mask,

            dropout_p=0.0,

            enable_gqa=True,

        )

 

        # Transpose output tensor from BHSD to BSHD dimension, reshape to 3D, after which mission output

        attn_output = attn_output.transpose(1, 2).reshape(bs, seq_len, self.hidden_size)

        attn_output = self.o_proj(attn_output)

        return attn_output

 

 

class LlamaMLP(nn.Module):

    “”“Feed-forward community with SwiGLU activation.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        # Two parallel projections for SwiGLU

        self.gate_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)

        self.up_proj = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)

        self.act_fn = F.silu  # SwiGLU activation perform

        # Mission again to hidden dimension

        self.down_proj = nn.Linear(config.intermediate_size, config.hidden_size, bias=False)

 

    def ahead(self, x: Tensor) -> Tensor:

        # SwiGLU activation: multiply gate and up-projected inputs

        gate = self.act_fn(self.gate_proj(x))

        up = self.up_proj(x)

        return self.down_proj(gate * up)

 

 

class LlamaDecoderLayer(nn.Module):

    “”“Single transformer layer for a Llama mannequin.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        self.input_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)

        self.self_attn = LlamaAttention(config)

        self.post_attention_layernorm = nn.RMSNorm(config.hidden_size, eps=1e–5)

        self.mlp = LlamaMLP(config)

 

    def ahead(self, hidden_states: Tensor, rope: RotaryPositionEncoding, attn_mask: Tensor) -> Tensor:

        # First residual block: Self-attention

        residual = hidden_states

        hidden_states = self.input_layernorm(hidden_states)

        attn_outputs = self.self_attn(hidden_states, rope=rope, attn_mask=attn_mask)

        hidden_states = attn_outputs + residual

 

        # Second residual block: MLP

        residual = hidden_states

        hidden_states = self.post_attention_layernorm(hidden_states)

        hidden_states = self.mlp(hidden_states) + residual

        return hidden_states

 

 

class LlamaModel(nn.Module):

    “”“The total Llama mannequin with none pretraining heads.”“”

 

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        self.rotary_emb = RotaryPositionEncoding(

            config.hidden_size // config.num_attention_heads,

            config.max_position_embeddings,

        )

 

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size)

        self.layers = nn.ModuleList([LlamaDecoderLayer(config) for _ in range(config.num_hidden_layers)])

        self.norm = nn.RMSNorm(config.hidden_size, eps=1e–5)

 

    def ahead(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:

        # Convert enter token IDs to embeddings

        hidden_states = self.embed_tokens(input_ids)

        # Course of via all transformer layers, then the ultimate norm layer

        for layer in self.layers:

            hidden_states = layer(hidden_states, rope=self.rotary_emb, attn_mask=attn_mask)

        hidden_states = self.norm(hidden_states)

        # Return the ultimate hidden states

        return hidden_states

 

 

class LlamaForPretraining(nn.Module):

    def __init__(self, config: LlamaConfig) -> None:

        tremendous().__init__()

        self.base_model = LlamaModel(config)

        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

 

    def ahead(self, input_ids: Tensor, attn_mask: Tensor) -> Tensor:

        hidden_states = self.base_model(input_ids, attn_mask)

        return self.lm_head(hidden_states)

 

 

def create_causal_mask(batch: Tensor, dtype: torch.dtype = torch.float32) -> Tensor:

    “”“Create a causal masks for self-attention.

 

    Args:

        batch: Batch of sequences, form (batch_size, seq_len)

        dtype: Information sort of the masks

 

    Returns:

        Causal masks of form (seq_len, seq_len)

    ““”

    batch_size, seq_len = batch.form

    masks = torch.full((seq_len, seq_len), float(‘-inf’), machine=batch.machine, dtype=dtype)

                .triu(diagonal=1)

    return masks

 

 

def create_padding_mask(batch: Tensor, padding_token_id: int, dtype: torch.dtype = torch.float32) -> Tensor:

    “”“Create a padding masks for a batch of sequences for self-attention.

 

    Args:

        batch: Batch of sequences, form (batch_size, seq_len)

        padding_token_id: ID of the padding token

        dtype: Information sort of the masks

 

    Returns:

        Padding masks of form (batch_size, 1, seq_len, seq_len)

    ““”

    padded = torch.zeros_like(batch, machine=batch.machine, dtype=dtype)

                  .masked_fill(batch == padding_token_id, float(‘-inf’))

    masks = padded[:,:,None] + padded[:,None,:]

    return masks[:, None, :, :]

 

 

# Generator perform to create padded sequences of mounted size

class PretrainingDataset(torch.utils.information.Dataset):

    def __init__(self, dataset: datasets.Dataset, tokenizer: tokenizers.Tokenizer,

                seq_length: int):

        self.dataset = dataset

        self.tokenizer = tokenizer

        self.seq_length = seq_length

        self.bot = tokenizer.token_to_id(“[BOT]”)

        self.eot = tokenizer.token_to_id(“[EOT]”)

        self.pad = tokenizer.token_to_id(“[PAD]”)

 

    def __len__(self):

        return len(self.dataset)

 

    def __getitem__(self, index):

        “”“Get a sequence of token ids from the dataset. [BOT] and [EOT] tokens

        are added. Clipped and padded to the sequence size.

        ““”

        seq = self.dataset[index][“text”]

        tokens: listing[int] = [self.bot] + self.tokenizer.encode(seq).ids + [self.eot]

        # pad to focus on sequence size

        toklen = len(tokens)

        if toklen < self.seq_length+1:

            pad_length = self.seq_length+1 – toklen

            tokens += [self.pad] * pad_size

        # return the sequence

        x = torch.tensor(tokens[:self.seq_length], dtype=torch.int64)

        y = torch.tensor(tokens[1:self.seq_length+1], dtype=torch.int64)

        return x, y

 

# Load the tokenizer

tokenizer = tokenizers.Tokenizer.from_file(“bpe_50K.json”)

 

# Load the dataset

dataset = datasets.load_dataset(“HuggingFaceFW/fineweb”, “sample-10BT”, cut up=“prepare”)

 

# Initialize the distributed surroundings

dist.init_process_group(backend=“nccl”)

rank = dist.get_rank()

local_rank = int(os.environ[“LOCAL_RANK”])

world_size = dist.get_world_size()

machine = torch.machine(f“cuda:{local_rank}”)

print(f“World dimension: {world_size}, Rank: {rank}, Native rank: {local_rank}. Utilizing machine: {machine}”)

#torch.cuda.set_device(local_rank)

#torch.set_default_device(machine)

 

# Create pretraining mannequin with default config, then wrap it in DDP

model_config = LlamaConfig()

mannequin = LlamaForPretraining(model_config).to(rank)

mannequin = DDP(mannequin, device_ids=[local_rank])  # , output_device=local_rank)

mannequin.prepare()

 

# print the mannequin dimension

print(f“Mannequin parameters dimension: {sum(p.numel() for p in mannequin.parameters()) / 1024**2:.2f} M”)

print(f“Mannequin buffers dimension: {sum(p.numel() for p in mannequin.buffers()) / 1024**2:.2f} M”)

print(f“Mannequin precision(s): {set([x.dtype for x in model.state_dict().values()])}”)

 

# Coaching parameters

epochs = 3

learning_rate = 1e–3

batch_size = 64

seq_length = 512

num_warmup_steps = 1000

PAD_TOKEN_ID = tokenizer.token_to_id(“[PAD]”)

 

# DataLoader, optimizer, scheduler, and loss perform

dataset = PretrainingDataset(dataset, tokenizer, seq_length)

sampler = DistributedSampler(dataset, shuffle=False)

dataloader = torch.utils.information.DataLoader(

    dataset,

    batch_size=batch_size,

    sampler=sampler,

    pin_memory=True,  # optionally available

    shuffle=False,

    num_workers=world_size,

)

optimizer = torch.optim.AdamW(

    mannequin.parameters(), lr=learning_rate, betas=(0.9, 0.99), eps=1e–8, weight_decay=0.1

)

num_training_steps = len(dataloader) * epochs

print(f“Variety of coaching steps: {num_training_steps} = {len(dataloader)} * {epochs}”)

warmup_scheduler = lr_scheduler.LinearLR(

    optimizer,

    start_factor=0.1, end_factor=1.0, total_iters=num_warmup_steps

)

cosine_scheduler = lr_scheduler.CosineAnnealingLR(

    optimizer,

    T_max=num_training_steps – num_warmup_steps,

    eta_min=0

)

scheduler = lr_scheduler.SequentialLR(

    optimizer,

    schedulers=[warmup_scheduler, cosine_scheduler],

    milestones=[num_warmup_steps]

)

loss_fn = nn.CrossEntropyLoss(ignore_index=PAD_TOKEN_ID)

 

# begin coaching

for epoch in vary(epochs):

    pbar = tqdm.tqdm(dataloader, desc=f“Epoch {epoch+1}/{epochs}”)

    sampler.set_epoch(epoch)   # required for shuffling solely

    for batch_id, batch in enumerate(pbar):

        if batch_id % 1000 == 0 and rank == 0:

            # checkpoint the mannequin and optimizer state, solely on rank 0 course of

            torch.save({

                “mannequin”: mannequin.module.state_dict() if isinstance(mannequin, DDP) else mannequin.state_dict(),

                “optimizer”: optimizer.state_dict(),

                “scheduler”: scheduler.state_dict(),

                “epoch”: epoch,

                “batch”: batch_id,

            }, f“llama_pretraining_checkpoint.pth”)

        # get batched information, transfer from CPU to GPU

        input_ids, target_ids = batch

        input_ids = input_ids.to(machine)

        target_ids = target_ids.to(machine)

        # create consideration masks: causal masks + padding masks

        attn_mask = create_causal_mask(input_ids) +

                    create_padding_mask(input_ids, PAD_TOKEN_ID)

        # extract output from mannequin

        logits = mannequin(input_ids, attn_mask)

        # compute loss: cross-entropy between logits and goal, ignoring padding tokens

        loss = loss_fn(logits.view(–1, logits.dimension(–1)), target_ids.view(–1))

        # backward with loss and gradient clipping by L2 norm to 1.0

        optimizer.zero_grad()

        loss.backward()

        torch.nn.utils.clip_grad_norm_(mannequin.parameters(), 1.0)

        optimizer.step()

        scheduler.step()

        pbar.set_postfix(loss=loss.merchandise())

        pbar.replace(1)

    pbar.shut()

 

# Save the mannequin

if rank == 0:

    torch.save(mannequin.state_dict(), “llama_pretraining_model.pth”)

    torch.save(mannequin.base_model.state_dict(), “llama_model.pth”)

 

# Clear up the distributed surroundings

dist.destroy_process_group()

Tags: DataGPUsmodelMultipleParallelismTraining

Related Posts

Image 184.jpg
Artificial Intelligence

The Proximity of the Inception Rating as an Analysis Criterion

February 10, 2026
Chatgpt image jan 6 2026 02 46 41 pm.jpg
Artificial Intelligence

The Loss of life of the “All the pieces Immediate”: Google’s Transfer Towards Structured AI

February 9, 2026
Title 1 scaled 1.jpg
Artificial Intelligence

Plan–Code–Execute: Designing Brokers That Create Their Personal Instruments

February 9, 2026
Annie spratt kdt grjankw unsplash.jpg
Artificial Intelligence

TDS E-newsletter: Vibe Coding Is Nice. Till It is Not.

February 8, 2026
Jonathan chng hgokvtkpyha unsplash 1 scaled 1.jpg
Artificial Intelligence

What I Am Doing to Keep Related as a Senior Analytics Marketing consultant in 2026

February 7, 2026
Cover.jpg
Artificial Intelligence

Pydantic Efficiency: 4 Tips about Validate Massive Quantities of Information Effectively

February 7, 2026
Next Post
Pexels photo 730547 1.jpeg

Bitcoin To Retest $85,000 As Bearish Technicals And On-Chain Weak point Align

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Chainlink Link And Cardano Ada Dominate The Crypto Coin Development Chart.jpg

Chainlink’s Run to $20 Beneficial properties Steam Amid LINK Taking the Helm because the High Creating DeFi Challenge ⋆ ZyCrypto

May 17, 2025
Image 100 1024x683.png

Easy methods to Use LLMs for Highly effective Computerized Evaluations

August 13, 2025
Gemini 2.0 Fash Vs Gpt 4o.webp.webp

Gemini 2.0 Flash vs GPT 4o: Which is Higher?

January 19, 2025
Blog.png

XMN is accessible for buying and selling!

October 10, 2025
0 3.png

College endowments be a part of crypto rush, boosting meme cash like Meme Index

February 10, 2025

EDITOR'S PICK

1cypxbmwichxgn4rnnd cua.png

Exploring most cancers varieties with neo4j | by David Wells | Aug, 2024

August 18, 2024
Image fx 21.jpg

How Information Analytics Helps Smarter Inventory Buying and selling Methods

January 9, 2026
Ai Data Storage Shutterstock 1107715973 Special.jpg

Faros AI and Globant Announce Partnership to Drive Sooner and Extra Environment friendly Agentic AI-Primarily based Tasks

December 18, 2024
019c2b1b ba76 7caf 94cf eb96382a9250.jpg

Payy Launches As Ethereum’s First Privateness-Enabled EVM L2

February 5, 2026

About Us

Welcome to News AI World, your go-to source for the latest in artificial intelligence news and developments. Our mission is to deliver comprehensive and insightful coverage of the rapidly evolving AI landscape, keeping you informed about breakthroughs, trends, and the transformative impact of AI technologies across industries.

Categories

  • Artificial Intelligence
  • ChatGPT
  • Crypto Coins
  • Data Science
  • Machine Learning

Recent Posts

  • The Proximity of the Inception Rating as an Analysis Criterion
  • High 7 Embedded Analytics Advantages for Enterprise Progress
  • Bitcoin, Ethereum, Crypto Information & Value Indexes
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy

© 2024 Newsaiworld.com. All rights reserved.

No Result
View All Result
  • Home
  • Artificial Intelligence
  • ChatGPT
  • Data Science
  • Machine Learning
  • Crypto Coins
  • Contact Us

© 2024 Newsaiworld.com. All rights reserved.

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?