• Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
Friday, November 21, 2025
newsaiworld
  • Home
  • Artificial Intelligence
  • ChatGPT
  • Data Science
  • Machine Learning
  • Crypto Coins
  • Contact Us
No Result
View All Result
  • Home
  • Artificial Intelligence
  • ChatGPT
  • Data Science
  • Machine Learning
  • Crypto Coins
  • Contact Us
No Result
View All Result
Morning News
No Result
View All Result
Home Machine Learning

Utilizing Constraint Programming to Clear up Math Theorems | by Yan Georget | Jan, 2025

Admin by Admin
January 12, 2025
in Machine Learning
0
1a6hwiqlphr0ek6rz1h7mfg.png
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

READ ALSO

How Relevance Fashions Foreshadowed Transformers for NLP

How Deep Characteristic Embeddings and Euclidean Similarity Energy Automated Plant Leaf Recognition


Case research: the quasigroups existence drawback

Yan Georget

Towards Data Science

Some mathematical theorems might be solved by combinatorial exploration. On this article, we concentrate on the issue of the existence of some quasigroups. We’ll reveal the existence or non existence of some quasigroups utilizing NuCS. NuCs is a quick constraint solver written 100% in Python that I’m at the moment creating as a aspect mission. It’s launched beneath the MIT license.

Let’s begin by defining some helpful vocabulary.

Teams

Quoting wikipedia:

In arithmetic, a group is a set with an operation that associates a component of the set to each pair of parts of the set (as does each binary operation) and satisfies the next constraints: the operation is associative, it has an identification component, and each component of the set has an inverse component.

The set of integers (constructive and adverse) along with the addition kind a gaggle. There are a lot of of sort of teams, for instance the manipulations of the Rubik’s Dice.

Supply: Wikipedia

Latin squares

A Latin sq. is an n × n array crammed with n completely different symbols, every occurring precisely as soon as in every row and precisely as soon as in every column.

An instance of a 3×3 Latin sq. is:

Designed by the writer

For instance, a Sudoku is a 9×9 Latin sq. with further properties.

Quasigroups

An order m quasigroup is a Latin sq. of dimension m. That’s, a m×m multiplication desk (we’ll word ∗ the multiplication image) through which every component happens as soon as in each row and column.

The multiplication legislation doesn’t need to be associative. Whether it is, the quasigroup is a gaggle.

In the remainder of this text, we’ll concentrate on the issue of the existence of some specific quasigroups. The quasigroups we’re fascinated by are idempotent, that’s a∗a=a for each component a.

Furthermore, they’ve further properties:

  • QG3.m issues are order m quasigroups for which (a∗b)∗(b∗a)=a.
  • QG4.m issues are order m quasigroups for which (b∗a)∗(a∗b)=a.
  • QG5.m issues are order m quasigroups for which ((b∗a)∗b)∗b=a.
  • QG6.m issues are order m quasigroups for which (a∗b)∗b=a∗(a∗b).
  • QG7.m issues are order m quasigroups for which (b∗a)∗b=a∗(b∗a).

Within the following, for a quasigroup of order m, we word 0, …, m-1 the values of the quasigroup (we wish the values to match with the indices within the multiplication desk).

Latin sq. fashions

We’ll mannequin the quasigroup drawback by leveraging the latin sq. drawback. The previous is available in 2 flavors:

  • the LatinSquareProblem,
  • the LatinSquareRCProblem.

The LatinSquareProblem merely states that the values in all of the rows and columns of the multiplication desk need to be completely different:

self.add_propagators([(self.row(i), ALG_ALLDIFFERENT, []) for i in vary(self.n)])
self.add_propagators([(self.column(j), ALG_ALLDIFFERENT, []) for j in vary(self.n)])

This mannequin defines, for every row i and column j, the worth shade(i, j) of the cell. We’ll name it the shade mannequin. Symmetrically, we will outline:

  • for every row i and shade c, the column column(i, c): we name this the column mannequin,
  • for every shade c and column j, the row row(c, j): we name this the row mannequin.

Notice that we’ve got the next properties:

  • row(c, j) = i <=> shade(i, j) = c

For a given column j, row(., j) and shade(., j) are inverse permutations.

  • row(c, j) = i <=> column(i, c) = j

For a given shade c, row(c, .) and column(., c) are inverse permutations.

  • shade(i, j) = c <=> column(i, c) = j

For a given row i, shade(i, .) and column(i, .) are inverse permutations.

That is precisely what’s applied by the LatinSquareRCProblem with the assistance of the ALG_PERMUTATION_AUX propagator (word {that a} much less optimized model of this propagator was additionally utilized in my earlier article concerning the Travelling Salesman Downside):

def __init__(self, n: int):
tremendous().__init__(checklist(vary(n))) # the colour mannequin
self.add_variables([(0, n - 1)] * n**2) # the row mannequin
self.add_variables([(0, n - 1)] * n**2) # the column mannequin
self.add_propagators([(self.row(i, M_ROW), ALG_ALLDIFFERENT, []) for i in vary(self.n)])
self.add_propagators([(self.column(j, M_ROW), ALG_ALLDIFFERENT, []) for j in vary(self.n)])
self.add_propagators([(self.row(i, M_COLUMN), ALG_ALLDIFFERENT, []) for i in vary(self.n)])
self.add_propagators([(self.column(j, M_COLUMN), ALG_ALLDIFFERENT, []) for j in vary(self.n)])
# row[c,j]=i <=> shade[i,j]=c
for j in vary(n):
self.add_propagator(([*self.column(j, M_COLOR), *self.column(j, M_ROW)], ALG_PERMUTATION_AUX, []))
# row[c,j]=i <=> column[i,c]=j
for c in vary(n):
self.add_propagator(([*self.row(c, M_ROW), *self.column(c, M_COLUMN)], ALG_PERMUTATION_AUX, []))
# shade[i,j]=c <=> column[i,c]=j
for i in vary(n):
self.add_propagator(([*self.row(i, M_COLOR), *self.row(i, M_COLUMN)], ALG_PERMUTATION_AUX, []))

Quasigroup mannequin

Now we have to implement our further properties for our quasigroups.

Idempotence is solely applied by:

for mannequin in [M_COLOR, M_ROW, M_COLUMN]:
for i in vary(n):
self.shr_domains_lst[self.cell(i, i, model)] = [i, i]

Let’s now concentrate on QG5.m. We have to implement ((b∗a)∗b)∗b=a:

  • this interprets into: shade(shade(shade(j, i), j), j) = i,
  • or equivalently: row(i, j) = shade(shade(j, i), j).

The final expression states that the shade(j,i)th component of the jth column is row(i, j). To enforces this, we will leverage the ALG_ELEMENT_LIV propagator (or a extra specialised ALG_ELEMENT_LIV_ALLDIFFERENT optimized to take note of the truth that the rows and columns include parts which are alldifferent).

for i in vary(n):
for j in vary(n):
if j != i:
self.add_propagator(
(
[*self.column(j), self.cell(j, i), self.cell(i, j, M_ROW)],
ALG_ELEMENT_LIV_ALLDIFFERENT,
[],
)
)

Equally, we will mannequin the issues QG3.m, QG4.m, QG6.m, QG7.m.

Notice that this drawback could be very laborious for the reason that dimension of the search house is mᵐᵐ. For m=10, that is 1e+100.

The next experiments are carried out on a MacBook Professional M2 working Python 3.13, Numpy 2.1.3, Numba 0.61.0rc2 and NuCS 4.6.0. Notice that the current variations of NuCS are comparatively sooner than older ones since Python, Numpy and Numba have been upgraded.

The next proofs of existence/non existence are obtained in lower than a second:

Experiments with small situations

Let’s now concentrate on QG5.m solely the place the primary open drawback is QG5.18.

Experiments with QG5 (within the second line, we use a MultiprocessingSolver)

Going additional would require to lease a strong machine on a cloud supplier throughout just a few days no less than!

As we’ve got seen, some mathematical theorems might be solved by combinatorial exploration. On this article, we studied the issue of the existence/non existence of quasigroups. Amongst such issues, some open ones appear to be accessible, which could be very stimulating.

Some concepts to enhance on our present method to quasigroups existence:

  • refine the mannequin which continues to be pretty easy
  • discover extra refined heuristics
  • run the code on the cloud (utilizing docker, for instance)
Tags: ConstraintGeorgetJanMathProgrammingsolveTheoremsYan

Related Posts

Screenshot 2025 11 18 at 18.28.22 4.jpg
Machine Learning

How Relevance Fashions Foreshadowed Transformers for NLP

November 20, 2025
Image 155.png
Machine Learning

How Deep Characteristic Embeddings and Euclidean Similarity Energy Automated Plant Leaf Recognition

November 19, 2025
Stockcake vintage computer programming 1763145811.jpg
Machine Learning

Javascript Fatigue: HTMX Is All You Must Construct ChatGPT — Half 2

November 18, 2025
Gemini generated image 7tgk1y7tgk1y7tgk 1.jpg
Machine Learning

Cease Worrying about AGI: The Quick Hazard is Decreased Basic Intelligence (RGI)

November 17, 2025
Mlm chugani 10 python one liners calculating model feature importance feature 1024x683.png
Machine Learning

10 Python One-Liners for Calculating Mannequin Characteristic Significance

November 16, 2025
Evelina siuksteryte scaled 1.jpg
Machine Learning

Music, Lyrics, and Agentic AI: Constructing a Sensible Tune Explainer utilizing Python and OpenAI

November 15, 2025
Next Post
Arrington Capital Xrp Based Hedge Fund.jpg

Whales Scoop Up 1 Billion XRP in 2 Days as Buyers Brace for Worth Explosion ⋆ ZyCrypto

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Gemini 2.0 Fash Vs Gpt 4o.webp.webp

Gemini 2.0 Flash vs GPT 4o: Which is Higher?

January 19, 2025
Blog.png

XMN is accessible for buying and selling!

October 10, 2025
0 3.png

College endowments be a part of crypto rush, boosting meme cash like Meme Index

February 10, 2025
Holdinghands.png

What My GPT Stylist Taught Me About Prompting Higher

May 10, 2025
1da3lz S3h Cujupuolbtvw.png

Scaling Statistics: Incremental Customary Deviation in SQL with dbt | by Yuval Gorchover | Jan, 2025

January 2, 2025

EDITOR'S PICK

Caption Transformer.jpg

Picture Captioning, Transformer Mode On

March 9, 2025
Business Promote My School Club Social Media Marketing In Pink Grey Illustrative Style.png

The Function of Company Governance in Constructing Belief and Transparency

August 21, 2024
Aws.jpg

Amazon to cough $75B on capex in 2024, extra subsequent yr • The Register

November 2, 2024
13hrw Vclx47vyn2xvr1x2a.jpeg

Leveraging Gemini-1.5-Professional-Newest for Smarter Consuming | by Mary Ara | Aug, 2024

August 21, 2024

About Us

Welcome to News AI World, your go-to source for the latest in artificial intelligence news and developments. Our mission is to deliver comprehensive and insightful coverage of the rapidly evolving AI landscape, keeping you informed about breakthroughs, trends, and the transformative impact of AI technologies across industries.

Categories

  • Artificial Intelligence
  • ChatGPT
  • Crypto Coins
  • Data Science
  • Machine Learning

Recent Posts

  • Why Fintech Begin-Ups Wrestle To Safe The Funding They Want
  • Bitcoin Munari Completes Main Mainnet Framework
  • Tips on how to Use Gemini 3 Professional Effectively
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy

© 2024 Newsaiworld.com. All rights reserved.

No Result
View All Result
  • Home
  • Artificial Intelligence
  • ChatGPT
  • Data Science
  • Machine Learning
  • Crypto Coins
  • Contact Us

© 2024 Newsaiworld.com. All rights reserved.

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?