• Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy
Saturday, November 29, 2025
newsaiworld
  • Home
  • Artificial Intelligence
  • ChatGPT
  • Data Science
  • Machine Learning
  • Crypto Coins
  • Contact Us
No Result
View All Result
  • Home
  • Artificial Intelligence
  • ChatGPT
  • Data Science
  • Machine Learning
  • Crypto Coins
  • Contact Us
No Result
View All Result
Morning News
No Result
View All Result
Home Artificial Intelligence

Making ready Information for BERT Coaching

Admin by Admin
November 27, 2025
in Artificial Intelligence
0
Daniel gimbel wdf6wlhil28 unsplash scaled.jpg
0
SHARES
0
VIEWS
Share on FacebookShare on Twitter

READ ALSO

The Product Well being Rating: How I Decreased Important Incidents by 35% with Unified Monitoring and n8n Automation

Coaching a Tokenizer for BERT Fashions


“”“Course of the WikiText dataset for coaching the BERT mannequin. Utilizing Hugging Face

datasets library.

““”

 

import time

import random

from typing import Iterator

 

import tokenizers

from datasets import load_dataset, Dataset

 

# path and title of every dataset

DATASETS = {

    “wikitext-2”: (“wikitext”, “wikitext-2-raw-v1”),

    “wikitext-103”: (“wikitext”, “wikitext-103-raw-v1”),

}

PATH, NAME = DATASETS[“wikitext-103”]

TOKENIZER_PATH = “wikitext-103_wordpiece.json”

 

 

def create_docs(path: str, title: str, tokenizer: tokenizers.Tokenizer) -> checklist[list[list[int]]]:

    “”“Load wikitext dataset and extract textual content as paperwork”“”

    dataset = load_dataset(path, title, cut up=“practice”)

    docs: checklist[list[list[int]]] = []

    for line in dataset[“text”]:

        line = line.strip()

        if not line or line.startswith(“=”):

            docs.append([])   # new doc encountered

        else:

            tokens = tokenizer.encode(line).ids

            docs[–1].append(tokens)

    docs = [doc for doc in docs if doc]  # take away empty paperwork

    return docs

 

 

def create_dataset(

    docs: checklist[list[list[int]]],

    tokenizer: tokenizers.Tokenizer,

    max_seq_length: int = 512,

    doc_repeat: int = 10,

    mask_prob: float = 0.15,

    short_seq_prob: float = 0.1,

    max_predictions_per_seq: int = 20,

) -> Iterator[dict]:

    “”“Generate samples from all paperwork”“”

    doc_indices = checklist(vary(len(docs))) * doc_repeat

    for doc_idx in doc_indices:

        yield from generate_samples(doc_idx, docs, tokenizer, max_seq_length, mask_prob, short_seq_prob, max_predictions_per_seq)

 

def generate_samples(

    doc_idx: int,

    all_docs: checklist[list[list[int]]],

    tokenizer: tokenizers.Tokenizer,

    max_seq_length: int = 512,

    mask_prob: float = 0.15,

    short_seq_prob: float = 0.1,

    max_predictions_per_seq: int = 20,

) -> Iterator[dict]:

    “”“Generate samples from a given doc”“”

    # variety of tokens to extract from this doc, excluding [CLS], [SEP], [SEP]

    target_length = max_seq_length – 3

    if random.random() < short_seq_prob:

        # shorter sequence is used 10% of the time

        target_length = random.randint(2, target_length)

 

    # copy the doc

    chunks = []

    for chunk in all_docs[doc_idx]:

        chunks.append(chunk)

 

    # exhaust chunks and create samples

    whereas chunks:

        # scan till goal token size

        running_length = 0

        finish = 1

        whereas finish < len(chunks) and running_length < target_length:

            running_length += len(chunks[end–1])

            finish += 1

        # randomly separate the chunk into two segments

        sep = random.randint(1, finish–1) if finish > 1 else 1

        sentence_a = [tok for chunk in chunks[:sep] for tok in chunk]

        sentence_b = [tok for chunk in chunks[sep:end] for tok in chunk]

        # sentence B: could also be from one other doc

        if not sentence_b or random.random() < 0.5:

            # discover one other doc (should not be the identical as doc_idx)

            b_idx = random.randint(0, len(all_docs)–2)

            if b_idx >= doc_idx:

                b_idx += 1

            # sentence B begins from a random place within the new doc

            sentence_b = []

            running_length = len(sentence_a)

            i = random.randint(0, len(all_docs[b_idx])–1)

            whereas i < len(all_docs[b_idx]) and running_length < target_length:

                sentence_b.prolong(all_docs[b_idx][i])

                running_length += len(all_docs[b_idx][i])

                i += 1

            is_random_next = True

            chunks = chunks[sep:]

        else:

            is_random_next = False

            chunks = chunks[end:]

        # create a pattern from the pair

        yield create_sample(sentence_a, sentence_b, is_random_next, tokenizer, max_seq_length, mask_prob, max_predictions_per_seq)

 

def create_sample(

    sentence_a: checklist[list[int]],

    sentence_b: checklist[list[int]],

    is_random_next: bool,

    tokenizer: tokenizers.Tokenizer,

    max_seq_length: int = 512,

    mask_prob: float = 0.15,

    max_predictions_per_seq: int = 20,

) -> dict:

    “”“Create a pattern from a pair of sentences”“”

    # Acquire id of particular tokens

    cls_id = tokenizer.token_to_id(“[CLS]”)

    sep_id = tokenizer.token_to_id(“[SEP]”)

    mask_id = tokenizer.token_to_id(“[MASK]”)

    pad_id = tokenizer.padding[“pad_id”]

    # modify size to suit the max sequence size

    truncate_seq_pair(sentence_a, sentence_b, max_seq_length–3)

    num_pad = max_seq_length – len(sentence_a) – len(sentence_b) – 3

    # create unmodified tokens sequence

    tokens = [cls_id] + sentence_a + [sep_id] + sentence_b + [sep_id] + ([pad_id] * num_pad)

    seg_id = [0] * (len(sentence_a) + 2) + [1] * (len(sentence_b) + 1) + [–1] * num_pad

    assert len(tokens) == len(seg_id) == max_seq_size

    # create the prediction targets

    cand_indices = [i for i, tok in enumerate(tokens) if tok not in [cls_id, sep_id, pad_id]]

    random.shuffle(cand_indices)

    num_predictions = int(spherical((len(sentence_a) + len(sentence_b)) * mask_prob))

    num_predictions = min(max_predictions_per_seq, max(1, num_predictions))

    mlm_positions = sorted(cand_indices[:num_predictions])

    mlm_labels = []

    for i in mlm_positions:

        mlm_labels.append(tokens[i])

        # prob 0.8 substitute with [MASK], prob 0.1 substitute with random phrase, prob 0.1 hold authentic

        if random.random() < 0.8:

            tokens[i] = mask_id

        elif random.random() < 0.5:

            tokens[i] = random.randint(4, tokenizer.get_vocab_size()–1)

    # randomly masks some tokens

    ret = {

        “tokens”: tokens,

        “segment_ids”: seg_id,

        “is_random_next”: is_random_next,

        “masked_positions”: mlm_positions,

        “masked_labels”: mlm_labels,

    }

    return ret

 

 

def truncate_seq_pair(sentence_a: checklist[int], sentence_b: checklist[int], max_num_tokens: int) -> None:

    “”“Truncate a pair of sequences till under a most sequence size.”“”

    whereas len(sentence_a) + len(sentence_b) > max_num_tokens:

        # decide the longer sentence to take away tokens from

        candidate = sentence_a if len(sentence_a) > len(sentence_b) else sentence_b

        # take away one token from both finish in equal chances

        if random.random() < 0.5:

            candidate.pop(0)

        else:

            candidate.pop()

 

 

if __name__ == “__main__”:

    print(time.time(), “began”)

    tokenizer = tokenizers.Tokenizer.from_file(TOKENIZER_PATH)

    print(time.time(), “loaded tokenizer”)

    docs = create_docs(PATH, NAME, tokenizer)

    print(time.time(), “created docs with %d paperwork” % len(docs))

    dataset = Dataset.from_generator(create_dataset, gen_kwargs={“docs”: docs, “tokenizer”: tokenizer})

    print(time.time(), “created dataset from generator”)

    # Save dataset to parquet file

    dataset.to_parquet(“wikitext-103_train_data.parquet”)

    print(time.time(), “saved dataset to parquet file”)

    # Load dataset from parquet file

    dataset = Dataset.from_parquet(“wikitext-103_train_data.parquet”, streaming=True)

    print(time.time(), “loaded dataset from parquet file”)

    # Print just a few samples

    for i, pattern in enumerate(dataset):

        print(i)

        print(pattern)

        print()

        if i >= 3:

            break

    print(time.time(), “completed”)

Tags: BERTDataPreparingTraining

Related Posts

Image 284.jpg
Artificial Intelligence

The Product Well being Rating: How I Decreased Important Incidents by 35% with Unified Monitoring and n8n Automation

November 29, 2025
John towner uo02gaw3c0c unsplash scaled.jpg
Artificial Intelligence

Coaching a Tokenizer for BERT Fashions

November 29, 2025
Chatgpt image nov 25 2025 06 03 10 pm.jpg
Artificial Intelligence

Why We’ve Been Optimizing the Fallacious Factor in LLMs for Years

November 28, 2025
Mlm chugani decision trees fail fix feature v2 1024x683.png
Artificial Intelligence

Why Resolution Timber Fail (and The way to Repair Them)

November 28, 2025
Mk s thhfiw6gneu unsplash scaled.jpg
Artificial Intelligence

TDS Publication: November Should-Reads on GraphRAG, ML Tasks, LLM-Powered Time-Sequence Evaluation, and Extra

November 28, 2025
Nastya dulhiier fisdt1rzkh8 unsplash scaled.jpg
Artificial Intelligence

BERT Fashions and Its Variants

November 27, 2025
Next Post
Image5 1.png

TruthScan vs. QuillBot: Searching for the Higher AI Detector

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

POPULAR NEWS

Gemini 2.0 Fash Vs Gpt 4o.webp.webp

Gemini 2.0 Flash vs GPT 4o: Which is Higher?

January 19, 2025
Blog.png

XMN is accessible for buying and selling!

October 10, 2025
0 3.png

College endowments be a part of crypto rush, boosting meme cash like Meme Index

February 10, 2025
Holdinghands.png

What My GPT Stylist Taught Me About Prompting Higher

May 10, 2025
1da3lz S3h Cujupuolbtvw.png

Scaling Statistics: Incremental Customary Deviation in SQL with dbt | by Yuval Gorchover | Jan, 2025

January 2, 2025

EDITOR'S PICK

Emerging Tech.jpg

How Hedge Funds Can Navigate 6 Main Compliance Points with Rising Know-how

September 7, 2024
Image 1.jpeg

Information Exhibits How ESG Reporting Software program Helps Corporations Obtain Sustainability Objectives

May 23, 2025
1xu062eki7boyxdh7pwg1mq.png

Exploring Music Transcription with Multi-Modal Language Fashions | by Jon Flynn | Nov, 2024

November 17, 2024
1930d3cb 66d9 4441 b30c 031f2879145a 800x420.jpg

Coinbase funds New York pilot giving $12K in USDC to low-income residents

October 1, 2025

About Us

Welcome to News AI World, your go-to source for the latest in artificial intelligence news and developments. Our mission is to deliver comprehensive and insightful coverage of the rapidly evolving AI landscape, keeping you informed about breakthroughs, trends, and the transformative impact of AI technologies across industries.

Categories

  • Artificial Intelligence
  • ChatGPT
  • Crypto Coins
  • Data Science
  • Machine Learning

Recent Posts

  • The Product Well being Rating: How I Decreased Important Incidents by 35% with Unified Monitoring and n8n Automation
  • Pi Community’s PI Dumps 7% Day by day, Bitcoin (BTC) Stopped at $93K: Market Watch
  • Coaching a Tokenizer for BERT Fashions
  • Home
  • About Us
  • Contact Us
  • Disclaimer
  • Privacy Policy

© 2024 Newsaiworld.com. All rights reserved.

No Result
View All Result
  • Home
  • Artificial Intelligence
  • ChatGPT
  • Data Science
  • Machine Learning
  • Crypto Coins
  • Contact Us

© 2024 Newsaiworld.com. All rights reserved.

Are you sure want to unlock this post?
Unlock left : 0
Are you sure want to cancel subscription?